4,295 | 32 | 17 |
下载次数 | 被引频次 | 阅读次数 |
从航空航天领域对增材制造金属材料的需求出发,介绍了增材制造金属材料在航空航天领域的应用以及市场规模。评述了铁基合金、镍基合金、钛合金、铝合金等增材制造合金的微观组织和力学性能。总结了4种增材制造合金在航空航天领域关键零件中的典型应用实例。指出了航空航天领域用增材制造金属材料存在的问题及未来的研究方向。
Abstract:Starting with the demand for additive manufactured metallic materials in the aerospace field, the applications and market scale of the additive manufactured metallic materials in aerospace field were introduced. The microstructure and mechanical properties of additive manufactured alloys, including iron-and nickel-base alloys, titanium alloy and aluminum alloy, were reviewed. The typical examples of application of the four types of additive manufactured alloys to key components in aerospace field were summarized. Finally, the existent problems and future research directions of the additive manufactured metallic materials reserved for the aerospace field were pointed out.
[1] 王天元,黄帅,周标,等.航空装备激光增材制造技术发展及路线图[J].航空材料学报,2023,43(1):1- 17.
[2] 王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报,2014,35(10):2690- 2698.
[3] DEBROY T,WEI H L,ZUBACK J S,et al.Additive manufacturing of metallic components:process,structure and properties[J].Progress in Materials Science,2018,92:112- 224.
[4] GU D D,MEINERS W,WISSENBACH K,et al.Laser additive manufacturing of metallic components:materials,processes and mechanisms[J].International Materials Reviews,2012,57(3):133- 164.
[5] 汤海波,吴宇,张述泉,等.高性能大型金属构件激光增材制造技术研究现状与发展趋势[J].精密成形工程,2019,11(4):58- 63.
[6] 顾冬冬,张红梅,陈洪宇,等.航空航天高性能金属材料构件激光增材制造[J].中国激光,2020,47(5):24- 47.
[7] 谭超林,周克崧,马文有,等.激光增材制造成型马氏体时效钢研究进展[J].金属学报,2020,56(1):36- 52.
[8] 孙晓峰,宋巍,梁静静,等.激光增材制造高温合金材料与工艺研究进展[J].金属学报,2021,57(11):1471- 1483.
[9] 宋波,张金良,章媛洁,等.金属激光增材制造材料设计研究进展[J].金属学报,2023,59(1):1- 15.
[10] 林鑫,黄卫东.应用于航空领域的金属高性能增材制造技术[J].中国材料进展,2015,34(9):684- 688.
[11] GRADL P,TINKER D C,PARK A,et al.Robust metal additive manufacturing process selection and development for aerospace components[J].Journal of Materials Engineering and Performance,2022,31(8):6013- 6044.
[12] 陈超越,王江,王瑞鑫,等.航空发动机及燃气轮机用关键材料的激光增材制造研究进展[J].科技导报,2023,41(5):34- 48.
[13] 3d科学谷.航空航天制造业常见的增材制造合金材料及工艺特性[J].世界制造技术与装备市场,2022(6):28- 30.
[14] 胡捷,廖文俊,丁柳柳,等.金属材料在增材制造技术中的研究进展[J].材料导报,2014(增刊2):459- 462.
[15] 田宗军,顾冬冬,沈理达,等.激光增材制造技术在航空航天领域的应用与发展[J].航空制造技术,2015(11):41- 45.
[16] 王迪,钱泽宇,窦文豪,等.激光选区熔化成形高温镍基合金研究进展[J].航空制造技术,2018(10):49- 60,67.
[17] CAMPBELL I,DIEGEL O,HUFF R,et al.Wohlers report 2022:3D printing and additive manufacturing state of the industry[R].Fort Collins:Wohlers Associates,2022.
[18] 刘振宝,梁剑雄,苏杰,等.高强度不锈钢的研究及发展现状[J].金属学报,2020,56(4):549- 557.
[19] 贾兴祺,李伟,许元涛,等.基于增材制造的钢铁块体材料高通量实验方法[J].上海金属,2022,44(2):1- 7.
[20] 王岩,魏钢,魏瑛康,等.热处理对选区激光熔化制备17- 4PH空蚀性能影响[J].钢铁,2023,58(10):140- 150.
[21] LI K,ZHAN J B,YANG T B,et al.Homogenization timing effect on microstructure and precipitation strengthening of 17- 4PH stainless steel fabricated by laser powder bed fusion[J].Additive Manufacturing,2022,52:102672.
[22] 刘世锋,魏钢,王岩,等.增材制造17- 4PH马氏体不锈钢研究进展[J].中国冶金,2022,32(6):15- 25.
[23] 李虎,赵伟江,李瑞迪,等.增材制造马氏体时效钢的研究进展[J].中国激光,2022,49(14):15- 28.
[24] LU Y F,WANG G L,ZHANG M B,et al.Microstructures,heat treatments and mechanical properties of AerMet100 steel fabricated by hybrid directed energy deposition[J].Additive Manufacturing,2022,56:102885.
[25] 刘振宝,梁剑雄,杨哲,等.高强度不锈钢应用及研究进展[J].中国冶金,2022,32(6):42- 53.
[26] 肖亚姣,刘文庆,孙光岩,等.15- 5PH不锈钢在580 ℃时效过程中的析出强化行为[J].上海金属,2023,45(4):38- 44.
[27] 王晓辉,罗海文.飞机起落架用超高强度不锈钢的研究及应用进展[J].材料工程,2019,47(9):1- 12.
[28] TAN C L,ZHOU K S,KUANG M,et al.Microstructural characterization and properties of selective laser melted maraging steel with different build directions[J].Science and Technology of Advanced Materials,2018,19(1):746- 758.
[29] MEI X Y,YAN Y,FU H D,et al.Effect of aging temperature on microstructure evolution and strengthening behavior of L- PBF 18Ni(300) maraging steel[J].Additive Manufacturing,2022,58:103071.
[30] TAN C L,ZHOU K,MA W,et al.Microstructural evolution,nanoprecipitation behavior and mechanical properties of selective laser melted high- performance grade 300 maraging steel[J].Materials & Design,2017,134:23- 34.
[31] CONDE F F,AVILA J A,OLIVEIRA J P,et al.Effect of the as-built microstructure on the martensite to austenite transformation in a 18Ni maraging steel after laser- based powder bed fusion[J].Additive Manufacturing,2021,46:102122.
[32] ERES- CASTELLANOS A,SANTANA A,DE- CASTRO D,et al.Effect of processing parameters on texture and variant selection of as- built 300 maraging steel processed by laser powder bed fusion[J].Scientific Reports,2022,12(1):16168.
[33] HABASSI F,HOURIA M,BARKA N,et al.Influence of post- treatment on microstructure and mechanical properties of additively manufactured C300 maraging steel[J].Materials Characterization,2023,202:112980.
[34] KANNAN R,LEONARD D N,NANDWANA P.Optimization of direct aging temperature of Ti free grade 300 maraging steel manufactured using laser powder bed fusion (LPBF)[J].Materials Science and Engineering A,2021,817:141266.
[35] YIN S,CHEN C Y,YAN X C,et al.The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni- 300 steel[J].Additive Manufacturing,2018,22:592- 600.
[36] BODZIAK S,AL- RUBAIE K S,VALENTINA L D,et al.Precipitation in 300 grade maraging steel built by selective laser melting:aging at 510 ℃ for 2 h[J].Materials Characterization,2019,151:73- 83.
[37] ZHANG B,WANG H M,RAN X Z,et al.Microstructure and mechanical properties of high- efficiency laser- directed energy deposited 15-5PH stainless steel[J].Materials Characterization,2022,190:112080.
[38] 常坤,梁恩泉,张韧,等.金属材料增材制造及其在民用航空领域的应用研究现状[J].材料导报,2021,35(3):3176- 3182.
[39] 杨爱民,秦仁耀,张国栋,等.飞机金属零件焊接及增材制造修复研究与应用现状[J].电焊机,2021,51(8):79- 87.
[40] SANCHEZ S,SMITH P,XU Z K,et al.Powder bed fusion of nickel- based superalloys:a review[J].International Journal of Machine Tools and Manufacture,2021,165:103729.
[41] 陈娇,罗桦,贺戬,等.航天用镍基高温合金及其激光增材制造研究现状[J].精密成形工程,2023,15(1):156- 169.
[42] KWABENA ADOMAKO N,HAGHDADI N,PRIMIG S.Electron and laser- based additive manufacturing of Ni- based superalloys:a review of heterogeneities in microstructure and mechanical properties[J].Materials & Design,2022,223:111245.
[43] 师梦杰,毛强,郑合凤,等.镍基合金中γ′相直线排列形貌的形成机制研究[J].上海金属,2021,43(1):77- 82.
[44] ZHANG M H,ZHANG B C,WEN Y J,et al.Research progress on selective laser melting processing for nickel- based superalloy[J].International Journal of Minerals,Metallurgy and Materials,2022,29(3):369- 388.
[45] HOSSEINI E,POPOVICH V A.A review of mechanical properties of additively manufactured Inconel 718[J].Additive Manufacturing,2019,30:100877.
[46] 李雅莉,雷力明,侯慧鹏,等.热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J].材料工程,2019,47(5):100- 106.
[47] FERRARESI R,AVANZINI A,CECCHEL S,et al.Microstructural,mechanical,and tribological evolution under different heat treatment conditions of Inconel 625 alloy fabricated by selective laser melting[J].Advanced Engineering Materials,2022,24(4):2100966.
[48] POPOVICH V A,BORISOV E V,POPOVICH A A,et al.Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting[J].Materials & Design,2017,131:12- 22.
[49] ZHANG L,LI Y T,ZHANG Q D,et al.Microstructure evolution,phase transformation and mechanical properties of IN738 superalloy fabricated by selective laser melting under different heat treatments[J].Materials Science and Engineering A,2022,844:142947.
[50] QI H,AZER M,RITTER A.Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718[J].Metallurgical and Materials Transactions A,2009,40(10):2410- 2422.
[51] HUANG L,CAO Y,ZHANG J H,et al.Effect of heat treatment on the microstructure evolution and mechanical behaviour of a selective laser melted Inconel 718 alloy[J].Journal of Alloys and Compounds,2021,865:158613.
[52] ZHANG Y C,LI Z G,NIE P L,et al.Effect of heat treatment on niobium segregation of laser- cladded IN718 alloy coating[J].Metallurgical and Materials Transactions A,2013,44(2):708- 716.
[53] TUCHO W M,HANSEN V.Characterization of SLM- fabricated Inconel 718 after solid solution and precipitation hardening heat treatments[J].Journal of Materials Science,2019,54(1):823- 839.
[54] LI X,SHI J J,CAO G H,et al.Improved plasticity of Inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process[J].Materials & Design,2019,180:107915.
[55] KAKEHI K,BANOTH S,KUO Y L,et al.Effect of yttrium addition on creep properties of a Ni- base superalloy built up by selective laser melting[J].Scripta Materialia,2020,183:71- 74.
[56] 王海丽.元素Re和W对选区激光熔化GH4169镍基合金组织及性能的影响[D].太原:中北大学,2015.
[57] ZHANG B C,BI G J,NAI S,et al.Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting[J].Optics & Laser Technology,2016,80:186- 195.
[58] CHEN L,SUN Y Z,LI L,et al.Effect of heat treatment on the microstructure and high temperature oxidation behavior of TiC/Inconel 625 nanocomposites fabricated by selective laser melting[J].Corrosion Science,2020,169:108606.
[59] 王文权,王苏煜,陈飞,等.选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J].金属学报,2021,57(8):1017- 1026.
[60] RAMESH KUMAR S,SRINIVAS V,JAGAN REDDY G,et al.3D printing of fuel injector in IN718 alloy for missile applications[J].Transactions of the Indian National Academy of Engineering,2021,6(4):1099- 1109.
[61] GRADL P R,PROTZ C S.Technology advancements for channel wall nozzle manufacturing in liquid rocket engines[J].Acta Astronautica,2020,174:148- 158.
[62] 3D Science Valley.HEWAM:heat exchanger with additive manufacturing[EB/OL].(2019- 06- 17) [2023- 10- 01].http://en.51shape.com/?p=1751.
[63] VILARO T,COLIN C,BARTOUT J D.As- fabricated and heat- treated microstructures of the Ti- 6Al- 4V alloy processed by selective laser melting[J].Metallurgical and Materials Transactions A,2011,42(10):3190- 3199.
[64] LI J H,ZHOU X L,BROCHU M,et al.Solidification microstructure simulation of Ti- 6Al- 4V in metal additive manufacturing:a review[J].Additive Manufacturing,2020,31:100989.
[65] LIU S,SHIN Y C.Additive manufacturing of Ti6Al4V alloy:a review[J].Materials & Design,2019,164:107552.
[66] SIMONELLI M,TSE Y Y,TUCK C.Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti- 6Al- 4V[J].Materials Science and Engineering A,2014,616:1- 11.
[67] NARTU M S K K Y,WELK B A,MANTRI S A,et al.Underlying factors determining grain morphologies in high- strength titanium alloys processed by additive manufacturing[J].Nature Communications,2023,14(1):3288- 3297.
[68] PANG X T,XIONG Z H,LIU S L,et al.Laser melting deposition of CP- Ti/Ti- 0.4Ni graded material for structural applications[J].Metallurgical and Materials Transactions A,2021,52(11):4742- 4748.
[69] XIONG Z H,PANG X T,LIU S L,et al.Hierarchical refinement of nickel- microalloyed titanium during additive manufacturing[J].Scripta Materialia,2021,195:113727.
[70] LIU L,MINASYAN T,IVANOV R,et al.Selective laser melting of TiB2- Ti composite with high content of ceramic phase[J].Ceramics International,2020,46(13):21128- 21135.
[71] PATIL A S,HIWARKAR V D,VERMA P K,et al.Effect of TiB2 addition on the microstructure and wear resistance of Ti- 6Al- 4V alloy fabricated through direct metal laser sintering (DMLS)[J].Journal of Alloys and Compounds,2019,777:165- 173.
[72] LI W,YANG Y,LIU J,et al.Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in- situ metal matrix composites prepared via selective laser melting[J].Acta Materialia,2017,136:90- 104.
[73] QIU D,ZHANG D,EASTON M A,et al.Refining as- cast β- Ti grains through ZrN inoculation[J].Metallurgical and Materials Transactions A,2018,49(5):1444- 1449.
[74] PANG X D,XIONG Z H,LIU S L,et al.Grain refinement effect of ZrB2 in laser additive manufactured metastable β- titanium alloy with enhanced mechanical properties[J].Materials Science and Engineering A,2022,857:144104.
[75] PANTAWANE M V,SHARMA S,SHARMA A,et al.Coarsening of martensite with multiple generations of twins in laser additively manufactured Ti6Al4V[J].Acta Materialia,2021,213:116954.
[76] ZHANG D Y,QIU D,GIBSON M A,et al.Additive manufacturing of ultrafine- grained high- strength titanium alloys[J].Nature,2019,576(7785):91- 95.
[77] ATTAR H,CALIN M,ZHANG L C,et al.Manufacture by selective laser melting and mechanical behavior of commercially pure titanium[J].Materials Science and Engineering A,2014,593:170- 177.
[78] TODARO C J,EASTON M A,QIU D,et al.Grain structure control during metal 3D printing by high- intensity ultrasound[J].Nature Communications,2020,11(1):142- 161.
[79] 唐洪奎,卓君,马宽,等.航空航天钛合金结构件增材制造技术[J].金属加工(热加工),2020(8):14- 17.
[80] 孙世杰.增材制造方法生产的TiAl合金零件将被应用于飞机发动机涡轮叶片[J].粉末冶金工业,2015(1):65- 66.
[81] ABOULKHAIR N T,SIMONELLI M,PARRY L,et al.3D printing of aluminium alloys:additive manufacturing of aluminium alloys using selective laser melting[J].Progress in Materials Science,2019,106:100578.
[82] MARTIN J H,YAHATA B D,HUNDLEY J M,et al.3D printing of high- strength aluminium alloys[J].Nature,2017,549(7672):365- 369.
[83] PRASHANTH K G,SCUDINO S,KLAUSS H J,et al.Microstructure and mechanical properties of Al- 12Si produced by selective laser melting:effect of heat treatment[J].Materials Science and Engineering A,2014,590:153- 160.
[84] WU J,WANG X Q,WANG W,et al.Microstructure and strength of selectively laser melted AlSi10Mg[J].Acta Materialia,2016,117:311- 320.
[85] THIJS L,KEMPEN K,KRUTH J P,et al.Fine- structured aluminium products with controllable texture by selective laser melting of pre- alloyed AlSi10Mg powder[J].Acta Materialia,2013,61(5):1809- 1819.
[86] 张文奇,朱海红,胡志恒,等.AlSi10Mg的激光选区熔化成形研究[J].金属学报,2017,53(8):918- 926.
[87] 闫泰起,唐鹏钧,陈冰清,等.退火温度对激光选区熔化AlSi10Mg合金微观组织及拉伸性能的影响[J].机械工程学报,2020,56(8):37- 45.
[88] ZHOU L,MEHTA A,SCHULZ E,et al.Microstructure,precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment[J].Materials Characterization,2018,143:5- 17.
[89] DOMFANG NGNEKOU J N,NADOT Y,HENAFF G,et al.Fatigue properties of AlSi10Mg produced by additive layer manufacturing[J].International Journal of Fatigue,2019,119:160- 172.
[90] ROSENTHAL I,SHNECK R,STERN A.Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process[J].Materials Science and Engineering A,2018,729:310- 322.
[91] 侯伟,陈静,储松林,等.选区激光熔化成形AlSi10Mg组织与拉伸性能的各向异性研究[J].中国激光,2018,45(7):61- 71.
[92] JIANG X H,YE T,ZHU Y H.Effect of process parameters on residual stress in selective laser melting of AlSi10Mg[J].Materials Science and Technology,2020,36(3):342- 352.
[93] PADOVANO E,BADINI C,PANTARELLI A,et al.A comparative study of the effects of thermal treatments on AlSi10Mg produced by laser powder bed fusion[J].Journal of Alloys and Compounds,2020,831:154822.
[94] STRUMZA E,YEHESKEL O,HAYUN S.The effect of texture on the anisotropy of thermophysical properties of additively manufactured AlSi10Mg[J].Additive Manufacturing,2019,29:100762.
[95] 张宇杰,于梅花,杨瑞霞,等.稀土Sc对激光制备AlSi10Mg合金性能的影响[J].中国激光,2020,47(8):82- 90.
[96] XIONG Z H,LIU S L,LI S F,et al.Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy[J].Materials Science and Engineering A,2019,740/741:148- 156.
[97] 余开斌,刘允中,杨长毅.热处理对选区激光熔化成形AlSi10Mg合金显微组织及力学性能的影响[J].粉末冶金材料科学与工程,2018,23(3):298- 305.
[98] ZHANG H,ZHU H H,NIE X J,et al.Effect of zirconium addition on crack,microstructure and mechanical behavior of selective laser melted Al- Cu- Mg alloy[J].Scripta Materialia,2017,134:6- 10.
[99] NIE X J,ZHANG H,ZHU H H,et al.Effect of Zr content on formability,microstructure and mechanical properties of selective laser melted Zr modified Al- 4.24Cu- 1.97Mg- 0.56Mn alloys[J].Journal of Alloys and Compounds,2018,764:977- 986.
[100] LI R D,WANG M B,LI Z M,et al.Developing a high- strength Al- Mg- Si- Sc- Zr alloy for selective laser melting:crack- inhibiting and multiple strengthening mechanisms[J].Acta Materialia,2020,193:83- 98.
[101] JIA Q B,ROMETSCH P,KüRNSTEINER P,et al.Selective laser melting of a high strength AlMnSc alloy:alloy design and strengthening mechanisms[J].Acta Materialia,2019,171:108- 118.
[102] ZHANG J L,GAO J B,SONG B,et al.A novel crack- free Ti- modified Al- Cu- Mg alloy designed for selective laser melting[J].Additive Manufacturing,2021,38:101829.
[103] GU D D,WANG H Q,DAI D H,et al.Rapid fabrication of Al- based bulk- form nanocomposites with novel reinforcement and enhanced performance by selective laser melting[J].Scripta Materialia,2015,96:25- 28.
[104] LI X P,JI G,CHEN Z,et al.Selective laser melting of nano- TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility[J].Acta Materialia,2017,129:183- 193.
[105] TAN H,HAO D P,AL- HAMDANI K,et al.Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders[J].Materials Letters,2018,214:123- 126.
[106] GAO C F,XIAO Z Y,LIU Z Q,et al.Selective laser melting of nano- TiN modified AlSi10Mg composite powder with low laser reflectivity[J].Materials Letters,2019,236:362- 365.
[107] GAO C,WANG Z,XIAO Z,et al.Selective laser melting of TiN nanoparticle- reinforced AlSi10Mg composite:Microstructural,interfacial,and mechanical properties[J].Journal of Materials Processing Technology,2020,281:116618.
[108] 林研,司丞,徐京豫,等.选区激光熔化高强韧铝合金的异质结构调控及力学性能[J].金属学报,2022,58(11):1509- 1518.
[109] MING X L,SONG D R,YU A T,et al.Effect of heat treatment on microstructure,mechanical and thermal properties of selective laser melted AlSi7Mg alloy[J].Journal of Alloys and Compounds,2023,945:169278.
[110] AHN S Y,MOON J,CHOI Y T,et al.A precipitation- hardened AlSi10Mg alloy fabricated using selective laser melting[J].Materials Science and Engineering A,2022,844:143164.
[111] RASHID R,MASOOD S H,RUAN D,et al.Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy[J].Additive Manufacturing,2018,22:426- 439.
[112] 吴皓平.增材制造在民机产业的应用[J].大飞机,2023(4):14- 20.
[113] 孙世杰.英国克兰菲尔德大学使用增材制造技术制作大型金属结构件[J].粉末冶金工业,2017,27(2):46.
[114] 张春杰,齐超琪,赵凯,等.大型航空航天铝合金承力构件增材制造技术[J].电焊机,2021,51(8):39- 54.
[115] 朱忠良,赵凯,郭立杰,等.大型金属构件增材制造技术在航空航天制造中的应用及其发展趋势[J].电焊机,2020,50(1):1- 14.
基本信息:
DOI:10.19947/j.issn.1001-7208.2023.09.03
中图分类号:V252
引用信息:
[1]孙暄,胡斌,熊智慧等.航空航天领域用增材制造金属材料的研究进展[J].上海金属,2024,46(03):1-12.DOI:10.19947/j.issn.1001-7208.2023.09.03.
基金信息:
国家自然科学基金(52101045); 中国博士后科学基金(2023M732192)