437 | 0 | 30 |
下载次数 | 被引频次 | 阅读次数 |
为了探索GCr15轴承钢中魏氏组织和针状铁素体的形成机制,对GCr15轴承钢铸坯和线材以一设定的速率30℃/min从900℃冷却至600℃,随后空冷至室温。采用金相显微镜、扫描电子显微镜对从900℃冷却至600℃的过程中铸坯和线材的组织转变进行了原位检测。结果表明:铸坯的奥氏体晶粒平均尺寸为237μm,线材为145μm;在以30℃/min的速率从900℃冷却至600℃的过程中,由于其奥氏体晶粒平均尺寸不同,铸坯中形成了魏氏组织,而线材中未形成魏氏组织;铸坯和线材中均发生了晶内针状铁素体在尺寸小于6μm的Al2O3上形核和长大。
Abstract:In order to explore the mechanism whereby Widmannstaetten structure and acicular ferrite form in GCr15 bearing steel, the casting billet and the wire of GCr15 bearing steel were cooled at a set rate of 30 ℃/min from 900 to 600 ℃ then air cooled to room temperature. The structural transformation in the casting billet and the wire during cooling from 900 to 600 ℃was in-situ detected by metallographic microscope and scanning electron microscope. The results showed that(a) the average size of austenite grains was 237 μm in the casting billet and 145 μm in the wire;(b) in the process of cooling at a rate of 30 ℃/min from 900 to 600 ℃, the Widmannstaetten structure formed in the casting billet but did not form in the wire due to their difference in the average size of austenite grains; and(c) the nucleation and growth of intragranular acicular ferrite on Al2O3 measuring less than 6 μm occurred in both the casting billet and the wire.
[1] JIAO W C,LI H B,FENG H,et al.High- temperature annealing significantly enhances intrinsic hot workability of the as- cast high- nitrogen M42 high- speed steel[J].Metallurgical and Materials Transactions A,2022,53(7):2426- 2451.
[2] 李波,史智越,徐海峰,等.高氮不锈轴承钢组织表征与滚动接触疲劳失效机制[J].钢铁,2024,59(3):137- 146.
[3] ERISIR E,ARARAT O,BILIR O G,et al.Enhancing wear resistance of 100Cr6 bearing steels by new heat treatment method[J].Metallurgical and Materials Transactions A,2022,53(3):850- 860.
[4] CHENG G,LI W F,ZHANG X G,et al.Transformation of inclusions in solid GCr15 bearing steels during heat treatment[J].Metals,2019,9(6):642- 642.
[5] 赵健,陈玉娥.金属凝固过程的原位观察研究进展[J].上海金属,2025,47(1):11- 18.
[6] MAO M T,WANG F,SUN X L,et al.In situ research of partial melt in as-cast H13 steel at elevated temperature[J].Ironmaking & Steelmaking,2020,47(2):159- 167.
[7] SHIM J,OH Y,SUH J,et al.Ferrite nucleation potency of non- metallic inclusions in medium carbon steels[J].Acta Materialia,2001,49(12):2115- 2122.
[8] KANTOR M M,SUDIN V V,BOZHENOV V A,et al.Microstructure and impact toughness of acicular ferrite in low alloy steel weld joints from results of multiple impact bending tests[J].Inorganic Materials,2023,59(4):436- 451.
[9] JIA X,LI H K,YANG Y L,et al.Evolution of complex oxide inclusions during the smelting process of oxide metallurgical steel and their effect on acicular ferrite nucleation[J].Metallurgical and Materials Transactions,2024,55(3):724- 735.
[10] LYU S J,WU H H,WANG K Y,et al.The microstructure evolution and influence factors of acicular ferrite in low alloy steels[J].Computational Materials Science,2023,218:111989.
[11] TEPLUKHIN G N,DUBININ P G,YAFAEVA S P,et al.Influence of alloyed elements on the formation of the Widmanstatten structure[J].Metal Science and Heat Treatment,1966,8(5):341- 344.
[12] 李隆盛.铸造合金及熔炼[M].北京:机械工业出版社,1989.
[13] 祝新民,冯光宏,张宏亮.温度参数对中碳钢35K组织的影响[J].热加工工艺,2014,43(23):36- 42.
[14] 杨浩.35K冷镦钢表层组织异常行为控制研究[D].重庆:重庆大学,2010.
[15] ZHANG Y R,CAI Q,LIU Y C,et al.Precipitation of carbides and dissolution of Widmanstatten structure for enhanced hardness in Ti2AlNb- based alloys[J].Journal of Materials Engineering and Performance,2019,28(3):1892- 1901.
[16] MA Y J,XUE Q,WANG H,et al.Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with Widmanstatten microstructure[J].Materials Characterization,2017,132:338- 347.
[17] CHENG W C,CHANG J.Complex Widmanstatten plates consisting of cementite and ferrite,product phases of a eutectoid reaction,in an Fe- C- Mnalloy[J].Materials Characterization,2013,77:53- 62.
[18] XIONG Z H,LIU S L,WANG X M,et al.The contribution of intragranular acicular ferrite microstructural constituent on impact toughness and impeding crack initiation and propagation in the heat- affected zone (HAZ) of low- carbon steels[J].Materials Science and Engineering A,2015,636:117- 123.
[19] WANG M M,GAO X H,ZHU C L,et al.Microstructure,mechanical properties,and strain- hardening behavior of V- N microalloyed pipeline steels consisted of polygonal ferrite and acicular ferrite[J].Steel Research International,2020,92(3):2000404.
基本信息:
DOI:10.19947/j.issn.1001-7208.2024.04.05
中图分类号:TG142.1
引用信息:
[1]任珺,李慧改.GCr15轴承钢从奥氏体化温度冷却过程中的组织转变[J].上海金属,2025,47(04):13-19.DOI:10.19947/j.issn.1001-7208.2024.04.05.
基金信息:
国家自然科学基金(50734008)