nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 04, v.47 20-25
富铜相对17-4PH不锈钢400℃时效过程中G相析出的影响
基金项目(Foundation):
邮箱(Email): wqliu@staff.shu.edu.cn;
DOI: 10.19947/j.issn.1001-7208.2024.04.15
摘要:

对17-4PH不锈钢进行1 040℃加热1 h水冷的固溶处理,随后于580℃回火4 h使富Cu相析出和在400℃进行长期时效处理。利用显微硬度计、原子探针层析技术(atom probe tomography, APT)及高分辨率透射电子显微镜(high resolution transmission electron microscope, HRTEM)研究了富Cu相对17-4PH不锈钢时效过程中G相析出的影响及其硬度随G相微观结构的变化。结果表明:回火后时效的试样硬度低于直接时效的试样,预回火生成的粗大富Cu相周围富集了Ni、Mn元素,在随后的时效过程中,Si元素在Ni、Mn富集区偏聚,加速了Ni-Mn-Si团簇向G相的转变。

Abstract:

17-4PH stainless steel was solution treated by heating at 1 040 ℃ for 1 h followed by water cooling, then tempered at 580 ℃ for 4 h to precipitate the copper-rich phase and long-term aged at 400 ℃. The influence of copper-rich phase on the precipitation of G-phase in 17-4PH stainless steel during the aging and the change of its hardness with the microstructure of G-phase were studied by microhardness tester, atom probe tomography(APT), and high-resolution transmission electron microscope(HRTEM). The results showed that(a) the hardness of the tempered and aged samples was lower than that of the directly aged samples;(b) Ni and Mn elements were enriched around the coarse Cu-rich phase generated during pre-tempering, and in the process of the subsequent aging, Si elements segregated in the nickel-and manganese-enriched regions, thus accelerating the transformation of Ni-Mn-Si clusters into the G-phase.

参考文献

[1] 王岩,魏钢,魏瑛康,等.热处理对选区激光熔化制备17- 4PH空蚀性能影响[J].钢铁,2023,58(10):140- 150.

[2] 赵义,郭亚欢,侯凯.热处理工艺对17- 4PH不锈钢力学性能的影响[J].机械工程材料,2009,33(5):5- 8.

[3] 胡伟星,刘耀华,孙贤熙,等.改善17- 4PH不锈钢热塑性和机械性能的途径[J].上海金属,1993,15(6):39- 41.

[4]王岩,田丰硕,谢信亮,等.选区激光熔化构建17- 4PH钢残余奥氏体梯度分布[J].钢铁,2024,59(5):134- 144.

[5] HSIAO C N,CHIOU C S,YANG J R.Aging reactions in a 17- 4 PH stainless steel[J].Materials Chemistry and Physics,2002,74(2):134- 142.

[6] WU J H,LIN C K.Tensile and fatigue properties of 17- 4 PH stainless steel at high temperatures[J].Metallurgical & Materials Transactions A,2002,33(6):1715- 1724.

[7] KOLLO R P,SEIDMAN D N.The temporal evolution of the decomposition of a concentrated multicomponent Fe- Cu- based steel[J].Acta Materialia,2008,56(9):2073- 2088.

[8] MIRZADEH H,NAJAFIZADEH A.Aging kinetics of 17- 4 PH stainless steel[J].Materials Chemistry and Physics,2009,116(1):119- 124.

[9] LIU Q D,GU J F,LIU W Q.On the role of Ni in Cu precipitation in multicomponent steels[J].Metallurgical and Materials Transactions A,2013,44:4434- 4439.

[10] JIAO Z B,LUAN J H,MILLER M K,et al.Precipitation mechanism and mechanical properties of an ultra- high strength steel hardened by nanoscale NiAl and Cu particles[J].Acta Materialia,2015,97:58- 67.

[11] WANG Z M,LI H,SHEN Q,et al.Nano-precipitates evolution and their effects on mechanical properties of 17- 4 precipitation-hardening stainless steel[J].Acta Materialia,2018,156:158- 171.

[12] 肖亚姣,刘文庆,孙光岩,等.15- 5PH不锈钢在580 ℃时效过程中的析出强化行为[J].上海金属,2023,45(4):38- 44.

[13] BEATTIE H J,VERSNYDER F L.A new complex phase in a high- temperature alloy[J].Nature,1956,178(4526):208- 209.

[14] BENTLEY J,MILLER M K,BRENNER S S,et al.Identification of G- phase in aged cast CF 8 type stainless steel[C]//Proceedings of the 43th Annual Meeting Electron Microscopy Society of America.Louisville:Electron Microscopy Society of America,1985.

[15] LEE E H,MAZIASZ P J,ROWCLIFFE A F.Structure and composition of phases occurring in austenitic stainless steels in thermal and irradiation environments[C]//Symposium on Irradiation Phase Stability.Pittsburgh:Oak Ridge National Laboratory,1980.

[16] YANG W J S,BRAGER H R,GARNER F A.Radiation- induced phase development in AISI 316[C]// Symposium on Irradiation Phase Stability.Pittsburgh:Hanford Engineering Development Laboratory,1980.

[17] GEMPERLE A,GEMPERLOVA J,SHA W,et al.Aging behaviour of cobalt free chromium containing maraging steels[J].Materials Science and Technology,1992,8(6):546- 554.

[18] YELI G,AUGER M A,WILFORD K,et al.Sequential nucleation of phases in a 17-4PH steel:microstructural characterisation and mechanical properties[J].Acta Materialia,2017,125:38- 49.

[19] MATEO A,LLANES L,ANGLADA M,et al.Characterization of the intermetallic G- phase in an AISI 329 duplex stainless steel[J].Journal of Materials Science,1997,32:4533- 4540.

[20] SHURO I,KUO H H,SASAKI T,et al.G- phase precipitation in austenitic stainless steel deformed by high pressure torsion[J].Materials Science and Engineering A,2012,552:194- 198.

[21] COUTURIER L,DE GEUSER F,DESCHAMPS A.Microstructural evolution during long time aging of 15- 5PH stainless steel[J].Materialia,2020,9:100634.

[22] MURAYAMA M,HONO K,KATAYAMA Y.Microstructural evolution in a 17- 4 PH stainless steel after aging at 400 ℃[J].Metallurgical and Materials Transactions A,1999,30(2):345- 353.

[23] WANG J,ZOU H,LI C,et al.The microstructure evolution of type 17- 4PH stainless steel during long- term aging at 350 ℃[J].Nuclear Engineering & Design,2006,236(24):2531- 2536.

[24] WANG J,ZOU H,LI C,et al.The effect of microstructural evolution on hardening behavior of type 17- 4PH stainless steel in long- term aging at 350 ℃[J].Materials Characterization,2006,57(4/5):274- 280.

基本信息:

DOI:10.19947/j.issn.1001-7208.2024.04.15

中图分类号:TG142.71;TG156.92

引用信息:

[1]张春风,王泽民,刘文庆.富铜相对17-4PH不锈钢400℃时效过程中G相析出的影响[J].上海金属,2025,47(04):20-25.DOI:10.19947/j.issn.1001-7208.2024.04.15.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文